Effect of Nitric Oxide on the Oxygen Metabolism and Growth of E. faecalis
نویسندگان
چکیده
Gastro-intestinal mucosal cells have a potent mechanism to eliminate a variety of pathogens using enzymes that generate reactive oxygen species and/or nitric oxide (NO). However, a large number of bacteria survive in the intestine of human subjects. Enterococcus faecalis (E. faecalis) is a Gram-positive bacterium that survives not only in the intestinal lumen but also within macrophages generating NO. It has been reported that E. faecalis generated the superoxide radical (O(2) (-)). To elucidate the role of O(2) (-) and NO in the mechanism for the pathogen surviving in the intestine and macrophages, we studied the role and metabolism of O(2) (-) and NO in and around E. faecalis. Kinetic analysis revealed that E. faecalis generated 0.5 micromol O(2) (-)/min/10(8) cells in a glucose-dependent manner as determined using the cytochrome c reduction method. The presence of NOC12, an NO donor, strongly inhibited the growth of E. faecalis without affecting in the oxygen consumption. However, the growth rate of NOC12-pretreated E. faecalis in NO-free medium was similar to that of untreated cells. Western blotting analysis revealed that the NOC12-treated E. faecalis revealed a large amount of nitrotyrosine-posititive proteins; the amounts of the modified proteins were higher in cytosol than in membranes. These observations suggested that O(2) (-) generated by E. faecalis reacted with NO to form peroxinitrite (ONOO(-)) that preferentially nitrated tyrosyl residues in cytosolic proteins, thereby reversibly inhibited cellular growth. Since E. faecalis survives even within macrophages expressing NO synthase, similar metabolism of O(2) (-) and NO may occur in and around phagocytized macrophages.
منابع مشابه
Effect of different concentrations of Zinc and their interaction with Sodium nitroprusside (SNP) on physiological and biochemical parameters of Plantago major L. Sara Nasiri Savadkoohi1*, Sakineh Saeidi-sar2 Abbas Ali Dehpour3 and Hossein Abbaspour1
Zinc is a necessary micronutrient in plants whose deficiency can alter essential functions in plant metabolism. High concentrations of Zn can be potentially toxic to plants causing phytotoxicity by the formation of reactive oxygen species. On the other hand, sodium nitroprusside (SNP), a donor of nitric oxide (NO) can protect cells from oxidative damage produce by reactive oxygen species. In th...
متن کاملEffect of Nitric Oxide on Postharvest Quality and Vase Life of Cut Carnation Flower
Nitric oxide (NO) is a highly reactive signaling molecule and plays a variety of physiological roles in plants. The research on the application of NO to postharvest preservation of flowers and fruits shows great promise in recent years. However, the physiological mechanism of exogenous NO to affect cut flowers is not very clear, and NO donor treatment protected plants from damage by increasing ...
متن کاملEffects of Copper Heavy Metal and Interaction With Nitric Oxide on Growth Parameters, Photosynthetic Pigment, Soluble Carbohydrate Content and Antioxidant Enzymes in Portulaca oleracea L. Ferdous Fendereski, Mahlagha Ghorbanli* and Arian Sateei
Copper is one of the heavy metal in plant that causes toxicity at high concentration via producing reactive oxygen species. Nitric oxide can protect cells from oxidative stress produce by reactive oxygen species. Effect of different concentrations of copper (1000, 1500 and 2000 μM) and interaction with nitric oxide (100 and 150 μM) were studied on growth parameters (shoot and root length) and s...
متن کاملP-90: The Effect of Nitric Oxide on Mouse Oocyte in Vitro Maturation in Two and Three Dimensional Conditions
Background: In vitro culture of ovarian follicles may preserve fertility in women with premature ovarian failure due to cancer .It seems that creation a condition that could maintain cellular communications and supports growth of follicles to produce mature oocytes appear to be essential. Nitric oxide (NO) has been recently shown to act with a dual action in mouse oocyte meiotic maturation depe...
متن کاملEffect of foliar spray of sodium nitroprusside (nitric oxide donor) on growth parameters, total chlorophyll content, iron content and antioxidant enzymes activity in cucumber (Cucumis sativus L.) under iron deficiency stress
In this study, the effect of foliar spray of sodium nitroprusside (100 μM) as a nitric oxide donor on iron deficiency stress alleviation in cucumber plant was investigated. The results indicated that iron deficiency stress reduced growth parameters, total chlorophyll content, Fe content and antioxidant enzymes activity of catalase, ascorbate peroxidase as well as guaiacol peroxidase. Sodium nit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Clinical Biochemistry and Nutrition
دوره 44 شماره
صفحات -
تاریخ انتشار 2009